skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Shiqi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hemati, Sara (Ed.)
    The application of 222 nm light from KrCl excimer lamps (GUV222 or far-UVC) is a promising approach to reduce the indoor transmission of airborne pathogens, including the SARS-CoV-2 virus. GUV222 inactivates airborne pathogens and is believed to be relatively safe for human skin and eye exposure. However, UV light initiates photochemical reactions which may negatively impact indoor air quality. We conducted a series of experiments to assess the formation of ozone ( O 3 ), and resulting formation of secondary organic aerosols (SOA), induced by commercial far-UVC devices in an office environment (small conference room) with an air exchange rate of 1.3   h 1 . We studied scenarios with a single far-UVC lamp, corresponding to the manufacturer’s recommendations for disinfection of a space that size, and with four far-UVC lamps, to test conditions of greater far-UVC fluence. The single lamp did not significantly impact O 3 or fine particulate matter levels in the room. Consistent with previous studies in the literature, the higher far-UVC fluences lead to increases in O 3 of 5 to 10 ppb above background, and minor increases in particulate matter (16% ± 10 % increase in particle number count). The use of far-UVC at minimum intensities required for disinfection, and in conjunction with adequate ventilation rates (e.g. ANSI/ASHRAE recommendations), may allow the reduction of airborne pathogen levels while minimizing the formation of air pollutants in furnished indoor environments. 
    more » « less
    Free, publicly-accessible full text available August 11, 2026
  2. Free, publicly-accessible full text available December 31, 2025
  3. null (Ed.)